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LEITER TO THE EDITOR 
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t Center for Polymer Studies4 and Physics Department, Boston University, Boston MA, 
022 15 USA 

Received 18 March 1982 

Abstract. A position-space renormalisation group (PSRG) approach has been developed 
for general site percolation problems in which the site occupancies are correlated, rather 
than independent, random variables. PSRG parameters are systematically introduced to 
describe multiple-site correlations. At the two- and four-site levels of approximation in 
the square lattice we find only two physical fixed points. One characterises random, or 
pure, percolation and has a universality class which is shown to encompass a variety of 
locally correlated site problems, including unfrustrated plaquettes and four-coordinated 
sites in a random-bond model. The second describes ‘Ising-correlated’ percolation and 
at the two-site level yields an excellent estimate (to within 2%) for the nearest-neighbour 
spin correlation function of the Ising model. 

Percolation problems on a lattice typically involve the large-scale connectivity proper- 
ties of a network of sites or bonds which are independent random variables. That is, 
the likelihood that an element (site or bond) is present is independent of that of its 
neighbours. A large number of connectivity problems, however, do not share this 
property, in that the probability of occupancy may depend on the presence or absence 
of neighbouring elements. 

Such ‘correlated percolation’ problems may arise for example in the context of 
the Ising model, if spins of one sign are regarded as occupied sites, and those of the 
opposite sign as empty. In this case the site correlation is generated by the interaction 
term in the Hamiltonian of the system. Since the correlation is a function of tem- 
perature we may refer to it as ‘thermally induced’. Correlated percolation in the Ising 
model has been studied recently by Coniglio et a1 (1977), Klein et a1 (1978), Murata 
(1979) and Coniglio and Klein (1980). 

In other situations involving correlated sites or bonds, however, a Hamiltonian 
formulation may be inappropriate. Systems involving quenched disorder may develop 
correlations which are ‘geometrically induced’. We consider, for instance, site percola- 
tion in a system for which the site occupancies are determined by a quenched random 
property of the dual lattice. Specific examples include the percolation of four- 
coordinated sites (that is, sites with four bonds emerging from them) on a square 
lattice in which the bonds are empty or occupied at random (Stanley 1979, Gonzalez 
and Reynolds 1980, Blumberg eta1 1980). A similar problem involves the percolation 
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of unfrustrated plaquettes in the *J random-bond Ising model (Tuthill 1981) where 
a plaquette (or elementary loop) of the lattice is defined as frustrated if the number 
of negative bonds in its perimeter is odd. In both of these examples the presence or 
absence of a site (that is, four-coordinated site or unfrustrated plaquette) is not 
independent of the condition of a neighbouring site, but the ‘interaction’ cannot be 
simply described by parameters in a global statistical weight, or Boltzmann factor. 
Approximation methods which rely on the existence of a Hamiltonian to incorporate 
correlation properties are thus ill suited to studying the latter class of problems. What 
is necessary is a general technique which focuses only on the local configuration of 
the network. 

In this letter we describe the development of such a general PSRG for correlated 
percolation, and apply the method to the case of site percolation on the square lattice. 
The interdependence of site occupancies is taken into account by introducing, in a 
systematic way, renormalisation parameters which describe multiple-site correlations. 
The two levels of approximation to be discussed here treat exactly the correlations 
(a) between two nearest-neighbour sites, and (b) among four sites in a square array. 
At the two-site level it is sufficient to introduce a single parameter in addition to the 
net concentration of occupied sites, while in the four-site approximation we must deal 
with a five-parameter PSRG. 

The results for both cases display only two physical fixed points. The first dominates 
a universality class that includes uncorrelated (‘pure’) percolation, as well as a variety 
of problems with geometrically induced correlation, including the four-coordinated 
sites and the unfrustrated plaquettes mentioned above. These problems share the 
property that the length which characterises the correlation between sites remains 
finite, and therefore is ‘renormalised away’ under the rescaling of the PSRG. The 
second fixed point controls percolation properties in cases of stronger and more 
long-ranged correlation. Included in this category is the percolation of thermally 
correlated sites at the critical point of the Ising model. It is important to point out 
that systems (such as the Baxter model) in which a marginal operator plays an important 
role cannot be studied by a renormalisation group containing the kind of approximation 
which we use here. Consequently our conclusion of two universality classes does not 
include such systems. 

Two-site approximation 

At the two-site level we must allow for independent probabilities for each of the 
possible states of a pair of nearest-neighbour sites. Denoting empty and occupied 
sites by 0 ’ s  and x’s, and assuming lattice isotropy, we define the probabilities u t ,  u2, u3 
by 

U1 = (00) U 2  = (Ox) = (XO) u 3 = ( x x )  (1) 
where the angular brackets signify the likelihood of the enclosed configuration. The 
sum of the probabilities of all states of a particular pair is normalised to one: 

ul+2u2+u3=  1. (2) 
It is convenient to introduce a second set of parameters which are closer to the 

usual language of percolation. The net concentrations of occupied sites p or empty 
sites 4 can be written as 

p = u2+ U 3  (3) 4 = 1 - p  = U1 + uz. 
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A single correlation parameter t is then defined by the relation 

tpq = u2. (4) 

U1 = d l - t p )  ( 5 )  

The case of no correlation, in which the site occupancies are independent random 
variables, amounts to fixing t = 1. Positive correlation, or occupied sites tending to 
cluster together, corresponds to values of t less than one, and negative correlation 
(or site repulsion) to t greater than one. To ensure positivity of the {ui}, we require that 

(6)  
Strictly speaking, the definition of t (equation (3)) is not meaningful in the limits p + 0 
or 1 (all sites empty or occupied). Our basic PSRG equations, however, may be cast 
in terms of the {ui} whose definitions are straightforward. 

To develop a renormalisation procedure we consider a cluster consisting of two 
adjacent four-site cells, as shown in figure 1. In the rescaled system this will be 
mapped to two nearest-neighbour sites. A renormalised site is said to be occupied if 
the cell which it represents contains a spanning cluster, independent of the configur- 
ation (occupied or empty) of the neighbouring renormalised site. Specifically 

(7) 
where Z' represents a sum with the constraint that the (say) right cell has a spanning 
cluster. Clearly this should reduce to the independent cell approximation of Reynolds 
et a1 (1977, 1978) for t = 1. The second PSRG equation is generated by the relation 

(8) 
Physically the left side of (8) is (OX) in the renormalised lattice, so that the sum Z" 
is restricted to those configurations in which the right cell has a spanning cluster and 

Combining equations (2)-(4), we find u1 and u3 in terms of p, q and t: 

ug = p ( 1 - tq ). 

0 c t c l/max( p, 1 - p ) .  

p '  = c' (configuration weights) 

t'p'(1 - p ' )  = 1" (configuration weights), 

l o1  

Figure 1. Typical clusters of eight sites used in the SRG for correlated percolation at 
the two-site level of approximation. Occupied sites are indicated by crosses, empty sites 
by open circles. Four-site cells enclosed by broken lines are mapped to sites of the 
renormalised lattice. Associated with configuration (a)  is a relative (unnormalised) weight 
given by expression (9a )  of the text; the weight of configuration (b ) ,  which contains a 
closed loop of occupied sites, is given by (96) .  
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the left has not, as in figure l (b) .  We require of course that this yield t' = 1 when the 
sites are uncorrelated-that is, when t = 1.  

In order to complete our PSRG we must express the weights of the configurations 
of the eight sites in terms of two-site correlations. We do so by adopting a modified 
form of the superposition approximation, well known in the theory of fluids (Munster 
1969). Specifically, we apply a factor of p or 4 for each occupied or empty site, and 
a factor of u l / q 2 ,  u z / p q  or u3/p2 for each bond. 

The superposition approximation in fluids is known to be quite good for high 
temperatures and low densities. At high densities and low. temperatures it is known 
to be a poor approximation-a fact reflected in our PSRG by divergences in the 
recursion relations as p or q approaches zero when t < 1. Roughly speaking, this 
breakdown arises because the superposition approximation overestimates the correla- 
tion in any closed loop. To compensate, we insert a factor of (u3/p2)-' for each 
plaquette consisting only of occupied sites, and a factor of [ ~ ~ / 4 ~ ] - '  for each plaquette 
made up only of empty sites. This modification is necessary to produce physically 
reasonable behaviour of the PSRG near p = 0 and 4 = 0; however the recursion relations 
are still not to be taken seriously in those limits. As examples we write the weight 
for the configuration of figure l (a )  as 

(9a 1 2 2 5  Ps4s(u1/q2)(u2/P4)s(~3/P2)4 = P 4 t (1 - tP)( l -  t4I4 

P642(u2/P4)5(u3/P2)5(P2/u3) = P 4 t (1 - td4 .  

and that of figure l ( b )  as 

(96) 
The weight formed using our approximation satisfies the following criteria. (a) It 

correctly reduces to the product of independent site probabilities in the limit t = 1.  
(b) It is non-singular in the p ,  4 = 1 limits when t = 1 ;  only the configuration with all 
sites occupied (or empty, respectively) has non-vanishing probability. (c) In the t = 0 
limit, the likelihood of finding a cluster with all sites occupied is simply p (or the 
likelihood of finding a single site of that cluster occupied), and that for all sites empty, 
9. Partially occupied configurations have vanishing probability when r = 0. 

The resulting RG flows are shown in figure 2 for the case of an R1 unidirectional 
connectivity rule under which the cell must be spanned horizontally-that is, in a 
direction parallel to the axis connecting the two cells. Other connectivity rules yield 
qualitatively similar flow diagrams. We have plotted our results on a composition 
triangle with vertices ul, u3 and 2u2, to avoid confusion arising from the definition 
of t in the limits of small p or 4. In this representation the line of zero correlation 
( I  = 1)  appears as the curve u1 = (ul + 

Disregarding the fully stable vertices u1 and u 3 ,  there are two physically meaningful 
fixed points. The point R, located at ( U l R  = 0.146, UZR = 0.236, u 3 R  = 0.382) or (tR = 1, 
PR = 0.6 18) corresponds to the percolation threshold for randomly occupied sites. 
The correlation parameter t acts as an irrelevant scaling field (eigenvalue = 0.215), 
while for t = 1 the recursion relations reduce to those of Reynolds et a1 (1977, 1978). 
The relevant eigenvalue at R is 1.528, giving a connectedness length exponent for 
percolation vp of 1.635. The fixed point R dominates a universality class which 
includes the percolation problems with the geometrically induced correlation men- 
tioned above. Plotted in figure 2 are the ul(u2) or t ( p )  lines for both the four- 
coordinated and the unfrustrated plaquette percolation problems. In this approxima- 
tion the percolation thresholds for both problems are only slightly reduced from those 
of the random-site problem, to 0.603 (four-coordinated sites) and 0.614 (unfrustrated 

2 2 5  

shown as a broken curve in figure 2. 
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U1 U3 

Figure 2. PSRG flow diagram for the two-site approximation. The fixed point R, lying 
on the broken line of no correlation (r = l) ,  controls percolation exponents along a critical 
line which terminates at I ,  the king fixed point. Shown also are the lines uI(u2)  for 
four-coordinated sites (dotted) and for unfrustrated plaquettes (chain curve). The fraction 
of unfrustrated plaquettes cannot be less than i. so that uI is restricted to values<$. 

plaquettes). The per cent reductions from the random-site percolation thresholds are 
2.4% and 0.6% respectively, to be compared with the values 5.3% (Blumberg et a1 
1980) and <OS% (Tuthill 1981) found from Monte Carlo studies. 

The remainingnon-trivial fixed point, labelled I in figure 2, is located at ( u t [  = 0.417, 
u21= 0.726, us1 = 0.438) or ( t r  = 0.291, p I  = 0.51 1).  There are two relevant scaling fields 
at this point-approximately pure deviations in p and t from their fixed point values- 
with the respective scaling powers 

y, = 0.629 yr = 0.98 1.  (10) 
We refer to this as the Ising percolation fixed point, since the thermal critical point 
of the two-dimensional Ising model is known to be a higher-order critical point for 
the percolation of spin-up (or spin-down) sites. That is, it is the terminus of a line of 
percolation points in magnetic field-temperature space (Coniglio et af 1977, Klein er 
a1 1978, Coniglio and Klein 1980). 

In this regard it is especially interesting that pI and tr agree remarkably well with 
the exact critical values p c  and t ,  for the two-dimensional Ising ferromagnet. For spins 
sii which can take on the values *l, the spin-spin correlation function for nearest 
neighbours can be expressed as 

(1 1) 
The left-hand side of equation (11) is known to take the value 2-'12 at the critical 
point (Kaufman 1949, Kaufman and Onsager 1949, Montroll et af 1963). Using the 
fact that p is $ at zero field and the critical temperature, we obtain the Ising critical 
point values 

(12) 

(si+ij+t) = 1 -4tpq. 

pc = 0.5 t, = 1 - 2-'/2 = 0.2929. 
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The scaling powers at the point I may also be compared with those of the Ising 
model. The parameter t is expected to scale as the two-spin correlation function-that 
is, as (T - TC)’-= where T, is the critical temperature and a = 0 for the two-dimensional 
king system. We therefore expect yr = YT (Ising) = 1.00, which is well approximated 
by our result. Our calculated yp should serve as an approximation for the Ising 
magnetisation scaling power, yM = 0.125. The poor agreement reflects the somewhat 
arbitrary nature of the ‘closed loop’ correction introduced into our superposition 
approximation; y p  is extremely sensitive to the exact form of this correction, while y ,  
is not. 

The part of the PSRG flow diagram for small uz corresponds to a region of ‘phase 
separation’, in which is favoured the formation of compact macroscopic clusters (with 
boundaries << volumes) of occupied or empty sites. Due to criterion (c) above, uz = 0 
is a fixed line. 

Four-site approximation 

There are six distinct configurations (modulo rotations) of the square array of four 
lattice sites. We therefore define the probabilities w1 to w6 by 

00 x o  
w1= (3 
w4 = ( x o )  - ( o x >  

w 1 + 4 w 2 +  w3+2w4+4ws+ wg= 1. 

w2 = (E> = (%) etc w 3  = ( x x >  = ( x ~ )  etc 
x x  

w s  = (:&) = (3 etc w 6 = ( x x ) .  
o x  - x o  

Normalisation implies the condition 

We note that the two-site parameters are easily expressed in terms of the w’s:  

u1= Wl+2WZ+W3 u2= wz+ w3+ w4+ ws 243 = wg+ 2w5 + w6 

or 

p = w2+2w3+ w4+3ws+ wg t p ( 1 - p ) =  W Z + W 3 + W 4 + W S .  

For spatial rescaling by a factor of two, we use a square cluster of sixteen lattice 
sites (figure 3) .  Individual configurations again receive statistical weights according 
to a superposition approximation, this time involving factors of wi for each four-site 

Figure 3. Typical cluster of sixteen sites used in the four-site approximation. This 
configuration would be assigned a relative weight w ~ w ~ w ~ w ~ u ~ ~ u ~ ~ u ~ ~ .  
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cell (excepting the centre cell) and l /uj  for each bond shared between these cells. To 
decide whether or not a renormalised site is occupied we apply an Rl-type connectivity 
rule (modified slightly to preserve lattice isotropy, in that cells of type w3 are considered 
spanned if the occupied sites are shared with a neighbouring cell). 

Two physical fixed points are again found, one (R) which controls random or pure 
percolation and is stable against weak correlation, and a second (I) at strong positive 
correlation. These are located at the positions shown in table 1, where we list as well 
the respective p and t for each fixed point. Listed also in table 1 are the relevant 
eigenvalues Ai at each point. 

Table 1. Fixed point locations and relevant eigenvalues in the four-site approximation. 

Fixed point R (pure percolation) I (positive correlation) 

0.02129 
0.03444 
0.05573 
0.05573 
0.09017 
0.14590 
0.61803 
1.0 
1.528 
- 

0.14282 
0.03456 
0.03851 
0.00908 
0.05153 
0.34065 
0.61588 
0.56505 
1.400 
1 .OS2 

At the point R we again have a single relevant eigenvalue, identical to that found 
in the two-site approximation. This reflects the fact that our superposition approxima- 
tion correctly reproduces the R1 recursion relations for the case of uncorrelated sites. 

The percolation points for four-coordinated sites and for frustrated plaquettes are 
found to be 

p (four-coordinated sites) = 0.602 (16) 
in good agreement with the results of the two-site approximation. 

The location of the point I now fails to provide a good estimate of the Ising critical 
point, but its'basic character remains the same as in the two-site approximation. In 
particular, we find two, relevant fields, with scaling powers yl,2 = 0.485,0.1144. A 
four-spin correlation in the two-dimensional king system should behave near the 
critical point like (T - T,)-" ; since a = 0, the existence of one scaling power near zero 
in our results is perhaps not surprising. As before, the point is unstable with respect 
to perturbations in the correlation parameter f ,  with PSRG flows going off in the 
direction of total correlation ( t = O )  or toward zero correlation. A separatrix leads 
from I to the random fixed point R. 

We point out that the introduction of the four-site configuration probabilities wi 
allows a rough test of the superposition formula which was used for the two-site 
approximation. Consider namely a four-site cell and specific values for the w's. Using 
the relation (12) to calculate p and f ,  we may apply the two-site superposition formulae 
to estimate the likelihood of each configuration, and compare with the original wi. 
Even at the fixed point I, where the site correlation is strong and superposition 

p (unfrustrated plaquettes) = 0.615 
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therefore less reliable, we find deviations from the correct values averaging only about 

To summarise, we have developed a general PSRG approach for site percolation 
problems in which the sites are arbitrarily correlated random variables. Our approach 
does not depend on the existence of a Hamiltonian to establish the correlation, but 
instead uses a superposition approximation to estimate the likelihoods of multi-site 
configurations. We have applied this PSRG to the two-dimensional square lattice, at 
the two-site and four-site levels of approximation, and find only two non-trivial fixed 
points-for pure random and for Ising-correlated percolation. We suggest that these 
in fact characterise the only two universality classes for two-dimensional percolation 
problems (in which marginal operators are absent), distinguishing systems with finite 
site-correlation lengths from those in which such lengths diverge. Further extensions 
of this work, in particular to three-dimensional systems, will be described in a sub- 
sequent publication. 
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